Correlated Q-Learning

Amy Greenwald and Keith Hall

This paper introduces Correlated-Q (CE-Q) learning, a multiagent Q-learning algorithm based on the correlated equilibrium (CE) solution concept. CE-Q generalizes both Nash-Q and Friend-and-Foe-Q: in general-sum games, the set of correlated equilibria contains the set of Nash equilibria; in constant-sum games, the set of correlated equilibria contains the set of minimax equilibria. This paper describes experiments with four variants of CE-Q, demonstrating empirical convergence to equilibrium policies on a testbed of general-sum Markov games.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.