Published:
May 2004
Proceedings:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
Volume
Issue:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
Track:
All Papers
Downloads:
Abstract:
Fuzzy ARTMAP (FAM) is a neural network architecture that can establish the correct mapping between reavalued input patterns and their correct labels. FAM can learn quickly compared to other neural network paradigms and has the advantage of incremental/online learning capabilities. Nevertheless FAM tends to slowdown as the size of the data set grows. This problem is analyzed and a solution is proposed that can speed up the algorithm in sequential as well as parallel settings. Experimental results are presented that show a considerable improvement in speed of the algorithm at the cost of creating larger size FAM architectures. Directions for future work are also discussed.
FLAIRS
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
ISBN 978-1-57735-201-3
Published by The AAAI Press, Menlo Park, California.