Published:
May 2004
Proceedings:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
Volume
Issue:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
Track:
All Papers
Downloads:
Abstract:
This article describes an indirectly encoded evolutionary learning algorithm to train morphological neural networks. The indirect encoding method is an algorithm in which the training of the neural network is done by finding the solution without considering the exact connectivity of the network. Looking for the set of weights and architecture in a reduced search space, this simple, but powerful training algorithm is able to evolve to a feasible solution using up to three layers required to perform the pattern classification. This type of representation provides the necessary compactness required by large networks. The algorithm was tested using Iris Fisher data and a prototype was written using Matlab.
FLAIRS
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
ISBN 978-1-57735-201-3
Published by The AAAI Press, Menlo Park, California.