An Extension of the Differential Approach for Bayesian Network Inference to Dynamic Bayesian Networks

Boris Brandherm

We extend the differential approach to inference in Bayesian networks (BNs) (Darwiche, 2000) to handle specific problems that arise in the context of dynamic Bayesian networks (DBNs). We first summarize Darwiche’s approach for BNs, which involves the representation of a BN in terms of a multivariate polynomial. We then show how procedures for the computation of corresponding polynomials for DBNs can be derived. These procedures permit not only an exact roll-up of old time slices but also a constant-space evaluation of DBNs. The method is applicable to both forward and backward propagation, and it does not presuppose that each time slice of the DBN has the same structure. It is compatible with approximative methods for roll-up and evaluation of DBNs.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.