Published:
May 2003
Proceedings:
Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2003)
Volume
Issue:
Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2003)
Track:
All Papers
Downloads:
Abstract:
This paper addresses the problem of improving the representation space in a rule-based intelligent system, through exception-based learning. Such a system generally learns rules containing exceptions because its representation language is incomplete. However, these exceptions suggest what may be missing from the system’s ontology, which is the basis of the representation language. We describe an interactive exception-based learning method for eliciting new elements in the system’s ontology in order to eliminate the exceptions of the rules. This method is implemented in the Disciple learning agent shell and has been evaluated in an agent training experiment at the US Army War College.
FLAIRS
Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2003)
ISBN 978-1-57735-177-1
Published by The AAAI Press, Menlo Park, California.