Published:
May 2001
Proceedings:
Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001)
Volume
Issue:
Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001)
Track:
All Papers
Downloads:
Abstract:
This paper presents an artificial neural network (ANN) approach to electric energy consumption (EEC) forecasting. In order to provide the forecasted energy consumption, the ANN interpolates between the EEC and its determinants in a training data set. In this study, two ANN models are presented and implemented on real EEC data. The first model is a univariate model based on past consumption values. The second model is a multivariate model based on EEC time series and a weather dependent variable, namely, degree days (DD). Forecasting performance measures such as mean square errors (MSE), mean absolute deviations (MAD), mean percentage square errors (MPSE) and mean absolute percentage errors (MAPE) are presented for both models.
FLAIRS
Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001)
ISBN 978-1-57735-133-7
Published by The AAAI Press, Menlo Park, California.