Published:
May 2001
Proceedings:
Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001)
Volume
Issue:
Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001)
Track:
All Papers
Downloads:
Abstract:
There has been surprisingly little research so far that systematically investigated the possibility of constructing hybrid learning algorithms by simple local modifications to decision tree learners. In this paper we analyze three variants of a C4.5-style learner, introducing alternative leaf models (Naive Bayes, IB1, and multi-response linear regression, respectively) which can replace the original C4.5 leaf nodes during reduced error post-pruning. We empirically show that these simple modifications can improve upon the performance of the original decision tree algorithm and even upon both constituent algorithms. We see this as a step towards the construction of learners that locally optimize their bias for different regions of the instance space.
FLAIRS
Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001)
ISBN 978-1-57735-133-7
Published by The AAAI Press, Menlo Park, California.