*Joshua D. Isom, Sean P. Meyn, Richard D. Braatz*

We describe an exact dynamic programming update for constrained partially observable Markov decision processes (CPOMDPs). State-of-the-art exact solution of unconstrained POMDPs relies on implicit enumeration of the vectors in the piecewise linear value function, and pruning operations to obtain a minimal representation of the updated value function. In dynamic programming for CPOMDPs, each vector takes two valuations, one with respect to the objective function and another with respect to the constraint function. The dynamic programming update consists of finding, for each belief state, the vector that has the best objective function valuation while still satisfying the constraint function. Whereas the pruning operation in an unconstrained POMDP requires solution of a linear program, the pruning operation for CPOMDPs requires solution of a mixed integer linear program.

*Subjects: *15. Problem Solving; 15.2 Constraint Satisfaction

*Submitted:* Apr 14, 2008

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.