Temporal Difference and Policy Search Methods for Reinforcement Learning:An Empirical Comparison

Matthew E. Taylor, Shimon Whiteson, Peter Stone

Reinforcement learning (RL) methods have become popular in recent years because of their ability to solve complex tasks with minimal feedback. Both genetic algorithms (GAs) and temporal difference (TD) methods have proven effective at solving difficult RL problems, but few rigorous comparisons have been conducted. Thus, no general guidelines describing the methods' relative strengths and weaknesses are available. This paper summarizes a detailed empirical comparison between a GA and a TD method in Keepaway, a standard RL benchmark domain based on robot soccer. The results from this study help isolate the factors critical to the performance of each learning method and yield insights into their general strengths and weaknesses.

Subjects: 12.1 Reinforcement Learning; 1.9 Genetic Algorithms

Submitted: Apr 23, 2007


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.