Real-time Interactive Learning in the NERO Video Game

Kenneth O. Stanley, Igor Karpov, Risto Miikkulainen, Aliza Gold

In the NeuroEvolving Robotic Operatives (NERO) video game, the player trains a team of virtual robots for combat against other players’ teams. The virtual robots learn in real time through interacting with the player. Since NERO was originally released in June, 2005, it has been downloaded over 50,000 times, appeared on Slashdot, and won several honors. The realtime NeuroEvolution of Augmenting Topologies (rtNEAT) method, which can evolve increasingly complex artificial neural networks in real time as a game is being played, drives the robots’ learning, making possible this entirely new genre of video game. The live demo will show how agents in NERO adapt in real time as they interact with the player. In the future, rtNEAT may allow new kinds of educational and training applications through interactive and adapting games.

Subjects: 1.8 Game Playing; 1.9 Genetic Algorithms


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.