Best-First Frontier Search with Delayed Duplicate Detection

Richard E. Korf

Best-first search is limited by the memory needed to store the Open and Closed lists, primarily to detect duplicate nodes. Magnetic disks provide vastly more storage, but random access of a disk is extremely slow. Instead of checking generated nodes immediately against existing nodes in a hash table, delayed duplicate detection (DDD) appends them to a file, then periodically removes the duplicate nodes using only sequential disk accesses. Frontier search saves storage in a best-first search by storing only the Open list and not the Closed list. The main contributions of this paper are to provide a scalable implementation of DDD, to combine it with frontier search, and to extend it to more general best-first searches such as A*. We illustrate these ideas by performing complete breadth-first searches of sliding-tile puzzles up to the 3x5 Fourteen Puzzle. For the 4-peg Towers of Hanoi problem, we perform complete searches with up to 20 disks, searching a space of over a trillion nodes, and discover a surprising anomaly concerning the problem-space diameter of the 15 and 20-disk problems. We also verify the presumed optimal solution lengths for up to 24 disks. In addition, we implement A* with DDD on the Fifteen Puzzle. Finally, we present a scalable implementation of DDD based on hashing rather than sorting.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.