Becoming Increasingly Reactive

Tom M. Mitchell

We describe a robot control architecture which combines a stimulus-response subsystem for rapid reaction, with a search-based planner for handling unanticipated situations. The robot agent continually chooses which action it is to perform, using the stimulus-response subsystem when possible, and falling back on the planning subsystem when necessary. Whenever it is forced to plan, it applies an explanation-based learning mechanism to formulate a new stimulus-response rule to cover this new situation and others similar to it. With experience, the agent becomes increasingly reactive as its learning component acquires new stimulus-response rules that eliminate the need for planning in similar subsequent situations. This Theo-Agent architecture is described, and results are presented demonstrating its ability to reduce routine reaction time for a simple mobile robot from minutes to under a second.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.