Adding Domain Knowledge to SBL through Feature Construction

Christopher John Matheus

This paper presents two methods for adding domain knowledge to similarity-based learning through feature construction, a form of representation change in which new features are constructed from relationships detected among existing features. In the first method, domain-knowledge constraints are used to eliminate less desirable new features before they are constructed. In the second method, domain-dependent transformations generalize new features in ways meaningful to the current problem. These two uses of domain knowledge are illustrated in CITRE where they are shown to improve hypothesis accuracy and conciseness on a tic-tat-toe classification problem.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.